February
2003
Wireless Sensor Networks
Great Duck Island, a
90-hectare expanse of rock and grass off the coast of Maine, is home to one of
the world's largest breeding colonies of Leach's storm petrels-and to one of
the world's most advanced experiments in wireless networking. Last summer, researchers
bugged dozens of the petrels' nesting burrows with small monitoring devices
called motes. Each is about the size of its power source-a pair of AA
batteries-and is equipped with a processor, a tiny amount of computer memory,
and sensors that monitor light, humidity, pressure, and heat. There's also a
radio transceiver just powerful enough to broadcast snippets of data to nearby
motes and pass on information received from other neighbors, bucket
brigadestyle.
This is more than the
latest in avian intelligence gathering. The motes preview a future pervaded by
networks of wireless battery-powered sensors that monitor our environment, our
machines, and even us . It's a future that David Culler, a
computer scientist at the University of California, Berkeley, has been working
toward for the last four years. "It's one of the big opportunities"
in information technology, says Culler. "Low-power wireless sensor
networks are spearheading what the future of computing is going to look
like."
Culler is on partial leave
from Berkeley to direct an Intel "lablet" that is perfecting the
motes, as well as the hardware and software systems needed to clear the way for
wireless networks made up of thousands or even millions of sensors. These
networks will observe just about everything, including traffic, weather,
seismic activity, the movements of troops on battlefields, and the stresses on
buildings and bridges-all on a far finer scale than has been possible before.
Because such networks
will be too distributed to have the sensors hard-wired into the electrical or
communications grids, the lablet's first challenge was to make its prototype
motes communicate wirelessly with minimal battery power. "The devices have
to organize themselves in a network by listening to one another and figuring
out who can they hear...but it costs power to even listen," says Culler.
That meant finding a way to leave the motes' radios off most of the time and
still allow data to hop through the network, mote by mote, in much the same way
that data on the Internet are broken into packets and routed from node to node.
Until Culler's group
attacked the problem, wireless networking had lacked an equivalent to the
data-handling protocols that make the Internet work. The lablet's solution:
TinyOS, a compact operating system only a few kilobytes in size, that handles
such administrative tasks as encoding data packets for relay and turning on
radios only when they're needed. The motes that run TinyOS should cost a few
dollars apiece when mass produced and are being field-tested in several
locations from Maine to California, where Berkeley seismologists are using them
to monitor earthquakes.
Anyone is free to
download and tinker with TinyOS, so researchers outside of Berkeley and Intel
can test wireless sensor networks in a range of environments without having to
reinvent the underlying technology. Culler's motes have been "a
tremendously enabling platform," says Deborah Estrin, director of the
Center for Embedded Networked Sensing at the University of California, Los
Angeles. Estrin is rigging a nature reserve in the San Jacinto mountains with a
dense array of wireless microclimate and imaging sensors.
Others are trying to
make motes even smaller. A group led by Berkeley computer scientist Kristofer
Pister is aiming for one cubic millimeter-the size of a few dust mites. At that
scale, wireless sensors could permeate highway surfaces, building materials,
fabrics, and perhaps even our bodies. The resulting data bonanza could vastly
increase our understanding of our physical environment-and help us protect our
own nests. - Wade Roush
Others in
WIRELESS SENSOR NETWORKS RESEARCHER PROJECT Gaetano Borriello
U. Washington; Intel
Small embedded computers and communications protocols Deborah Estrin
U. California, Los Angeles
Networking, middleware, data handling, and hardware for distributed sensors and actuators Michael Horton
Crossbow Technology
Manufacture of sensors and motes Kristofer Pister
U. California, Berkeley Millimeter-size sensing and communication devices
WIRELESS SENSOR NETWORKS RESEARCHER PROJECT Gaetano Borriello
U. Washington; Intel
Small embedded computers and communications protocols Deborah Estrin
U. California, Los Angeles
Networking, middleware, data handling, and hardware for distributed sensors and actuators Michael Horton
Crossbow Technology
Manufacture of sensors and motes Kristofer Pister
U. California, Berkeley Millimeter-size sensing and communication devices
No comments:
Post a Comment